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MICROWAVE EMISSION FROM POLAR FIRN 

A. T. C. Chang 
Goddard Space Flight Center 

Greeribelt, Maryland 

B. J. Choudhury 
Computer Sciences Corporation 

Silver Spring, Maryland 

INTRODUCTION 

Brightness temperatures obtained from the Electrically Scanning Microwave Radiometer 
(ESMR) 1 .55-cm wavelength experiment on board the Nimbus-5 spacecraft over Greenland and 
Antarctica (Reference 1) have shown a lack of correlation with the physical surface tempera- 
ture. The model study of microwave emission from a half-space with scattering and absorbing 
centers by A. W. England and T. C. Chang et al. (References 2 and 3) calculated the brightness 
temperature for a model snow field consisting of randomly spaced ice spheres of different 
radii and dielectric properties. The scattering and extinction cross sections were calculated 
using the Mie-scattering theory and the brightness temperature values were then obtained by 
numerically solving the radiative transfer equation. Results of the calculation showed that 
the emerging microwave radiation originates deep within the medium. These results not only 
provided an explanation for the lack of correlation of the observed brightness temperatures 
and the physical surface temperatures but also opened up the possibility of remotely sensing 
such parameters as the snow accumulation rate and snow temperature profile. 

In the model calculations performed by T. C .  Chang et al. and A. W. England (References 3 ,  
2 and 4), the scattering and absorption properties have been assumed to be independent of 
the snow depth. This is in contrast to  the actual situation where the crystal size does vary 
with the snow depth (References 5 and 6). Also, in the former work the physical tempera- 
ture of snow has been taken to  be independent of depth and in the latter calculation a linear 
temperature variation has been used. The accuracy of the numerical results obtained by 
A. W. England (Reference 4) is difficult to  assess because of the convergence problem asso- 
ciated with his method of solution (Reference 2). Here we have attempted to  provide a 
quantitative explanation for the radio brightness temperature observed over Greenland and 
Antarctica by the ESMR on board the Nimbus-5 satellite. Scattering and absorption parame- 
ters used in the calculation are those compiled by H. J. Zwally (Reference 7) by fitting the 
crystal size data measured by A. J. Gow (References 5 and 6) at  different snow depths. 
Seasonal and depth variation of temperature have also been taken into account. The radiative 
transfer equation, equation ( 1 ), has been solved numerically using these snow parameters 



by the method of invariant imbedding by S .  Chandrasekhar (Reference 8), R. E. Bellman 
et al. (Reference 9),  R. Redheffer (Reference lo) ,  R. W. Preisendorfer (Reference 1 l ) ,  and I. P. 
Grant and G. E. Hunt (Reference 12). The accuracy of the calculations has been verified 
by comparing the numerical results with those obtained by S. Chandrasekhar (Reference 8) 
for the law of darkening for the conservative case of perfect scattering with Rayleigh and 
isotropic scattering phase function in a semi-infinite plane parallel medium. 

NUMERICAL SOLUTION FOR THE RADIATIVE TRANSFER EQUATION 

The radiative transfer equation for an axially symmetric inhomogeneous medium in which 
all interactions are linear can be written in the form of an integro-differential equation 
(Reference 1 2) 

dl(x, = -.(X) I(x, /A) + a(x)  [ 1 - 
P d x  i 

where the radiation intensity I(x, p )  is at  depth x traveling in the direction making an angle 
whose cosine is p with the normal toward the direction of increasing x (Figure 1). 

The functions ( ~ ( x ) ,  o ( x ) ,  B(x),  and p(x,  p, p') are prescribed functions of their arguments. 
They are referred to as the extinction per unit length, the single scattering albedo, the source, 
and the phase function. respectively. For a nonuniform medium these functions are gener-. 
ally piecewise continuous functions of depth subject to the conditions 

B ( x ) > O , ~ ( x ) 2 0 , 0 <  w ( x ) <  l , p ( x , p , p ' ) > O .  (2) 

1 (x, P )  b In the present work, the following normalization for the 
phase function will be used 

( 3 )  

for all values of x. 
Figure 1. Radiation intensity 

of I(x, I*). 
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Instead of working with depth x, one generally works with a dimensionless depth variable 
called optical depth r ,  defined in differential form as 

dT = a(x)  dx. (4) 

In terms of optical depth, equation (1) reduces to 

The principle of invariance replaces the equation of transfer, equation ( 5 ) ,  by an operator 
equation. This operator equation has the characteristic of mapping the fluxes incident on 

the boundaries of a medium from outside 
to the emergent fluxes. This mathemati- 
cal mapping operator can be separated 
into two physical operators called reflec- 

b 

tance and transmittance operators. 

Consider an arbitrary layer bounded by 
planes with coordinates r1 and r2 within 
a medium which is bounded between the 
layers r = a and r = b. i.e., a < r1 < r2 
< b (Figure 2). The intensities impinging 
on this layer are I f ( r l ,  p) and I-(r2,  p). 
The principle of invariance demands that 
the emergent intensities I+ ( r 2 ,  p) and 
I-(rl,  p) will depend linearly on the in- 
cident intensities I + ( r l ,  p), I-(r2, p) and 
on  the intensities C - ( r l ,  r 2 )  and 
C f ( r 2 ,  r1 ), which are generated by the 
sources within the layer. In other words, 
one can write 

‘1 

1 I - , ( r , ,  II) c - ( T q  I T2) 

a 

‘\ * 
Figure 2. Source and incident intensity. 
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and 

In matrix notation, equation (6) can be written as 

where the S-matrix is the exact mapping operator in the absence of internal sources 

and the .Z(rl, r 2 )  is the contribution of internal sources to  the emergent intensities 

The response operators r and t defined through equation (6) are in general nonlocal integral 
operators. In physical terms these operators represent the transmission (t)  and the reflec- 
tion (r) characteristics of the layer bounded by the arguments of these operators. For a 
source-free medium, the knowledge of these operators is sufficient to  predict all radiative 
transfer characteristics of that medium as one can expect from equation (7). 

The radiative transfer equation ( 1) contains an integral over-the-angle variable. Numerically 
any integration requires a discrete variable representation. A quadrature representation will be 
imposed for this angular integration; the choice of quadrature will remain arbitrary. With 
this understanding, a set of values is selected for p 
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With this set of values, the quadrature formula requires that weights Ci be associated such 
that for a function f(p)  

Since the choice of equation (8) requires that all angle variables be positive, and examination 
of equation (6) shows that one set of radiation is going in the positive direction and the other 
is going in the negative direction, two vectors representing the propagation direction (positive 
and negative) of the radiation will be defined as: 

Explicitly, the vector u+(x> is 

One can easily verify that the radiative transfer equation (1)  can be written in terms of 
u+(x) and u-(x) as 

du+(x) 1 
M- dx + u'(x) = [ 1 - w(x) ]  B(x) + ?  O ( X )  [p"(x) C ~ ' ( x )  + p+-(x) C u-(x)] (12) 

1 -M du-o + u-(x) = [ 1 - w ( x ) ]  B(x) + Z O ( X )  [ p-'(x) C u'(x) + p--(x) C u-(x)l dx 

5 
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where M and C are m x m diagonal matrices of quadrature angles and weights 

c = [ C .  Fiji 
1 

M = [ p .  F . . ]  
J 11 

and phase functions p++, p+-, p-', and p-- can be expressed as: 

P++(X) = { P k  Pi '  Pj) ) 

Note that in equation ( 1  2) if the internal source term B(x) has directional characteristics 
(i.e., it is a function of p),  one should also write these terms as vectors in the same way 
as the intensity vectors defined in equation (1  1). For the sake of simplicity of notation the 
following symbolic matrices and vectors constructed from equation ( 1  2) are defined: 

In equation ( 1  3), I denotes an m x m identity matrix; r + + ( x ) ,  r"-(x), I'-+(x), and r--(x) 
are m x m matrices; and C'(x) and C-(x) are vectors of order m. In terms of these symbols, 
equation (1 2) can be written as: 

6 



Equation (14) is the representation of the radiative transfer equation (1)  within the quadra- 
ture approximation. 

One can now consider an infinitesimal layer bounded between optical depths x and y (y > x) 
and a point within this layer, i.e., 

A finite difference approximation to the lefthand side of equation ( 14) will be 

On the righthand side of equation (1 4), the intensity vectors u+ and u- will be evaluated a t  
their boundary of incidence, i.e., at the optical depth x and y,  respectively. This allows one 
to write equation (14) in the finite difference notation as: 

Equation (1 6) now can be cast in the form given by equation (6). One can thus identify the 
reflection and the transmission operators of this infinitesimal layer as 
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and the source vectors of this layer as 

The matrices in equation (1  7) and the vectors in equation ( 1  8) can be computed numerically 
from the knowledge of the scattering albedo w(x), the phase function p(x, p ,  p ' ) ,  etc. It 
should be emphasized that these operators are only local approximations to  the actual 
operators. It is therefore necessary that the layer thickness (y - x) for which these operators 
will be computed be very small. An upper bound for the layer thickness can be set on the 
basis of physical argument that all elements of the transmission matrix be positive, and the 
elements of reflection matrix are also positive. The accuracy of the solution of the radiative 
transfer equation primarily depends upon the accuracy of these operators. Numerical results 
show that an acceptable accuracy in the computation of these operators can be achieved by 
taking the layer thickness to  be one-tenth of the cosine values for the smallest angle in the 
quadrature. 

Although equations (1  7) and (1  8) allow construction of the response operators and the 
source vectors of an infinitesimal layer, the task is far from being complete. In general, the 
medium for which one wishes to  solve the radiative transfer equation is not an infinitesimal 
layer. If, however, one knows the procedure of juxtaposing two layers having one common 
boundary, then by repeated application of this procedure one can generate an arbitrary thick 
layer. The algebra of juxtaposing two layers can now be shown. 

Using the notations of equations ( 1 7) and ( 18), equation ( 16) can be written as 
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Now an equation analogous to  equation (1  9) can be written for a layer bounded between 
z and y (Figure 3 ) .  

i""' z 

t "+W 

r-:) Y 

Figure 3. Radiation components between layers 
z and x. 

The boundary y being arbitrary, one can 
consider a layer bounded between x and z 
(juxtaposed layer). For this layer 

+ c-(x,  z) 

It is t o  be noted that the validity of equations ( 1  9), (20), and (21) does not depend upon 
layer thickness but on the principle of invariance. 

The next step is t o  find the relationship between the operators and vectors in equation (21), 
and those appearing in equations (1  9) and (20). This relationship can be found by elimi- 
nating u+(y) and u-(y) from equations (19) and (20). By simple algebraic manipulation of 
equations ( 1  9) and (20), keeping in mind that these operators are matrices, one can write 



llllL I I1 1111 I1111 I1111.11.1 11.11 .,,I., 111 I, I I I . ,  . 

The juxtaposition relationship expressed in equation (22) is basic for layer juxtaposition, 
and the validity of the mathematics do not depend upon the layer thickness. If one expands 
the inverse of the matrices appearing in equation (22) as a series, then the exact origin of 
each term can be physically visualized as due to  repeated reflection and transmission of radi- 
ation due to  scattering. The iterative procedure of solving the radiative transfer equation 
accounts for such scattering by numerical iteration. In the present method, such scattering 
contribution has been built into the calculation. As a result, such iteration is not required. 

Thus far we have outlined the procedures for constructing the response operators of an 
infinitesimal layer and the arbitrary thick layer. For a medium which is bounded between 
optical thickness 7 = a and 7 = b, we see from equation (21) that we need to  specify the in- 
tensities incident on the boundaries from 
outside the medium to  calculate the 
emergent intensities. Unique emergent 
intensities can be obtained by imposing 
these boundary conditions. 

The medium of interest in the present 
study, e.g., snow, ice, soil, and water, has 
different reflecting characteristics. Let 
R(a) and R(b) denote the Fresnel reflec- 
tivity of surface a and b. One can also 
assume that an intensity Y+ is incident on 
the surface a and that an intensity Y-  is in- 
cident on the surface b of the medium 
from outside (Figure 4). Then the flux 
conservation criteria at surface a and b 
can be imposed to obtain 

1'- b 

1 x ' ( b r  

- 

u+(b) 

a 

Figure 4. Reflecting characteristic intensities of Y' 
and Y- on surfaces a and b. u'(a) = R(a) u-(a) t [ 1 - R(a)] Y +  

(23) 
u-(b) = R(b) u'(a) + [ 1 - R(b)] Y- 
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By substituting equation (23) into equation (21) one can solve for u+(b) and u-(a). The 
algebraic calculation will obtain unique solutions for the emergent intensity vector as 

The observable intensities are obtained from equation (24). Refer to  Figure 5 for the 
boundary conditions of radiative transfer. Then the upwelling brightness at b and 

Figure 5. Boundary conditions of radiative transfer for layer a and b. 
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down-welling brightness at  a can be expressed as: 

T; = [ l  - R(b)]  u+(b) + R(b)  Y- 

T< = [ 1 - R(a) 1 u-(a) + R(a)  Y +  

Based on the previous discussion, a computer program has been prepared (Reference 13) to 
solve the radiative transfer equation. The numerical accuracy of the program was tested by 
calculating the law of darkening for Rayleigh and isotropic scattering cases for which S .  
Chandrasekhar had given exact numerical results. In both cases the accuracy was found to 
be better than 0.1 percent. Figure 6 shows the results of Rayleigh scattering obtained using 
9-point Lobatto and 7-point Gauss quadratures. Because this numerical method is non- 
iterative, the computer program is economically feasible for both acquisition time and 
storage. 

We will now present the comparison of numerical results obtained by using the previous 
numerical method with other single particle scattering calculations (References 2 and 4). For 
this purpose we have used the Rayleigh phase matrix: 

This phase matrix is valid when the radius of the particle is small compared to  the wavelength 
of radiation. When the particle size is large one must use a Rayleigh-Debye or Mie phase 
matrix (Reference 14). 

In A. W. England’s paper (Reference 4) the microwave brightness temperature and its polar- 
ization were calculated as a function of the view angle for different cases of scattering albedo. 
The discrete angle method for obtaining an analytic solution (Reference 8) was used and the 
resulting set of coupled linear algebraic equations was solved numerically to obtain the bright- 
ness temperature. To obtain the exact solution using this method one needs to solve an in- 
finite set of coupled equations. This had been accomplished by S. Chandrasekhar for some 
specific cases of scattering. Numerically, however, only a finite set of coupled equations can 
be solved, which leads to  a truncation error (Reference 2). A quantitative estimate of this 
truncation error is extremely difficult to  resolve. In Figure 7, we show the comparison of 
our calculated values with those obtained by A. W. England (Reference 4). This agreement 
is reassuring and does indicate that the solution obtained by A. W. England has converged to 
the same accuracy as the results of the present calculation, a conservative estimate of which 
is about 1 percent. 

12 
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Figure 6. Results of law of darkening in Rayleigh scattering semi-infinite plane parallel atmosphere. 
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Figure 7. Results of emission darkening; comparison with A. W. England’s calculations (1975). 

BRIGHTNESS TEMPERATURE OF THE POLAR FlRN 

The calculation of the brightness temperature of the polar firn requires the specifjcation of a 
single scattering albedo w ( T ) ,  physical temperature within the medium B ( T ) ,  the scattering 
phase matrix p ( ~ ,  p,  p ’ ) ,  and the reflection coefficient at the medium boundary. In the 
single particle scattering approach, the albedo can be calculated from the knowledge of the 
scattering and the extinction coefficients of the particle. These coefficients depend upon 
the radius of the particle and its refractive index. For ice particles, with which we are con- 
cerned, the specification of size is sufficient to determine the scattering coefficient. The ex- 
tinction coefficient of the particle on the other hand depends on the imaginary part of the 
index of refraction which is less sensitive to the crystal size. Calculations of T. C. Chang 
et  al. (Reference 3) show that for ice at  273 K the extinction coefficient is about an order of 
magnitude higher than for ice at  253 K. Although this sensitivity can be used to distinguish 
temperature profiles, it also introduces some uncertainty in quantitative comparison with 
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remotely measured brightness temperature. It is also to  be noted that the imaginary part of 
the index of refraction changes considerably with the presence of impurities (Reference 15). 
For continental shelf ice the effect of impurities may be negligible. 

H. J. Zwally (Reference 7) has performed a regression study of the crystal size data for dif- 
ferent snow depths obtained by A. J. Gow (References 5 and 6) at various locations in the 
South and North Polar regions. Using the Mie scattering formula (Reference 3), H. J. Zwally 
has provided expressions for scattering per unit length ys in terms of snow depth. In Table 1 
we note these expressions, ys (m-' ), for which we have calculated the brightness temperature. 

Table 1 

Location and Mean Annual Surface Temperature and Scattering Per Unit Length (Zwally 1977) 

Location 

South Pole, Antarctica 
90" S 

Byrd, Antarctica 
79" 59's 
120" 01'w 

Camp Century, Greenland 
77" 11" 
61" 1O'W 

Inge Lehmann, Greenland 
77" 57" 
39" 11'w 

T m *  (K) 

222 

24 5 

249 

243 

0.222 + 0.00863 z 

0.152 + 0.0968 z 

0.163 + 0.0647 z 

0.162 + 0.1 178 z 

*Mean annual surface temperature. 
z is snow depth in meters. 

We have mentioned that absorption per unit length is quite insensitive to  the crystal size and 
depends largely on the imaginary part of the refractive index (n"). Although the choice of 
n" is not completely arbitrary, its exact value is difficult to  obtain. Since the qualitative and 
quantitative behavior of the brightness temperature for values of n" has been studied in de- 
tail by T. C. Chang et  al. (Reference 3), we have used an intermediate value, n" = 0.00055 
(Reference 16) in this study. The value of the Mie absorption coefficient y, for this n" has 
been found t o  be y, = 0.15 (References 3 and 7). The single scattering albedo is defined as 
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Therefore, the depth variation of w depends on the depth variation of ys and y,. 

Since y, varies with the physical temperature (Reference 16) of the snow, an analytic ex- 
pression for depth and seasonal variation of polar snow temperature has been used (Refer- 
ence 7). 

B ( z ,  t )  = 2 5 0  - 15 cos [ 0.99 (t  - 84) - (97 + ~ O Z ) ]  (28) 

The maximum surface temperature occurs at time t = 0 and t = 365 and minimum tempera- 
ture is for time t = 365/2. The mean temperature of the surface and the asymptotic tem- 
perature is 250 K and the amplitude of variation a t  the surface is 30 K. This mean tempera- 
ture is quite acceptable for three of the locations given in Table 1. For the South Pole we 
have used the observed mean annual temperature of 222 K. 

Calculated brightness temperature values for various locations and times are given in Table 2. 
The agreement between the calculated and the observed values for the North Polar region is 
quite good. For the South Polar region, the calculated values are slightly higher than the 
observed values. These results indicate that the magnitude for the scattering and absorption 
coefficients used are reasonable values. However, the calculated brightness temperatures are 
quite different from the results reported by H. J. Zwally (Reference 7). Without using the 
empirical parameter introduced by H. J. Zwally to  adjust the scattering coefficient, our cal- 
culated brightness temperatures for all locations would be higher than those calculated by 
Zwally. For the South Polar region our calculated brightness temperatures are about 8 K 
higher than the observed values, which indicate that the values of the scattering albedo need 
to  be increased for this study. 

One source of uncertainty in the quantitative comparison discussed above was the choice of 
the value for n". This choice is crucial because absorption coefficient (7,) depends on this 
value. We have not incorporated in our calculation the temperature dependence of n" (Ref- 
erence 16). The value of n" which we have used in our calculation (n" = 0.0005) corresponds 
to  the temperature of ice at 253 K. To illustrate the effect of different values of n", we 
have studied the dependence of brightness temperature on n" by taking the scattering 
parameter (ys) of the Byrd station. The physical temperature distribution was taken for the 
time t = 365/4 which gives the surface temperature of 250 K. The results of our calculation 
are shown in Figure 8. Note that as the value of n" decreases, the absorption coefficient 
(7,) also decreases and we see the expected decrease in the brightness temperature. It is 
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Table 2 

Comparison of Observed and Calculated Brightness Temperatures of Locations in Table 1 

Location 

South Pole, Antarctica 

Byrd, Antarctica 

Camp Century, Greenland 

Inge Lehmann, Greenland 

t" 

1 
36514 
36512 

1 
36514 
36512 

1 
36514 
36512 

1 
36514 
36512 

Calculated Brightness 
Temperature 

193.4 
191.5 
183.9 

21 6.3 
21 3.7 
204.5 

217.15 
214.9 
206.1 

21 5.0 
212.2 
202.8 

Observation 
(ESMR) 

185 
180 
175 

210 
205 
200 

225 
21 5 
210 

225 
215 
210 

*t is the time parameter as shown in equation (28). 

2201 -- -- --- 
-\ 

n" = 0.00055 --.+ 

TB200 t 
t =  - 365 BY RD STATION 

4 
n" IMAGINARY PART OF REF. INDEX. lgo t / 

n" = 0.00020 

180 I 1 I I 
0.15 0.125 0.10 0.075 0.05 

f-- 7, 

Figure 8. Dependence of brightness temperature on n", the imaginary part of index of refraction. 
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interesting to note that the observed brightness temperature a t  the Byrd Station was ap- 
proximately 2 10  K. 

SUMMARY AND CONCLUSIONS 

A microscopic single particle scattering model has been used along with measured crystal 
size and temperature variation with depth to  provide a quantitative explanation of observed 
brightness temperatures of the South Polar and North Polar regions. This extends the calcu- 
lations performed by T. C. Chang et al. (Reference 3 )  by taking into account the variations 
of grain size and temperature with depth. For the North Polar region, the calculated bright- 
ness temperatures are in good agreement with the observations, but for the South Polar 
region our calculations give higher brightness temperatures than observed. Probable cause 
of these discrepancies are: (1) uncertainty in the measurement of n", (2) neglect of the 
dependence of n" on temperature, and ( 3 )  neglect of snow density variation with depth. 

Based on the single particle scattering model, the'calculated brightness temperatures corre- 
spond to  the data obtained from the Nimbus-5 ESMR experiment over Greenland and 
Antarctica. Using the same scattering and absorption coefficients that were used by H.J. 
Zwally, we find that our calculated brightness temperatures are significantly higher than 
those calculated by Zwally. This discrepancy is probably due to  the approximate analytic 
solution of the radiative transfer equation used in his calculations of the brightness tem- 
perature values. In view of these findings, our calculations would provide a more realistic 
brightness temperature estimate for the polar firn. 

Apart from the independent particle scattering model discussed above, there are alternate 
explanations for the source of microwave scattering and absorption for radio brightness 
temperatures of Antarctica and continental glaciers which have been studied by A. S. 
Gurvich et  al. (Reference 17), A. Stogryn (Reference 18), and L. Tsang and J. A. Kong (Ref- 
erence 19). In these studies, the source of microwave scattering is the fluctuation of the 
dielectric constant of the media (Reference 20). The brightness temperature calculated, 
based on these models, depends upon the variance and the correlation length of the fluctua- 
tion of the dielectric media. Physically this scattering mechanism is as plausible as scattering 
by independent ice grains, and it is reasonable to believe that these two scattering mechanisms 
co-exist in the medium and should be considered together in the quantitative calculation. 
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